
No

foreword by Chris Coyier

SASS FOR
WEB DESIGNERS

Dan Cederholm

Brief books for people who make websites

10

MORE FROM THE A BOOK APART LIBRARY

HTML5 for Web Designers
Jeremy Keith

CSS3 for Web Designers
Dan Cederholm

The Elements of Content Strategy
Erin Kissane

Responsive Web Design
Ethan Marcotte

Designing for Emotion
Aarron Walter

Mobile First
Luke Wroblewski

Design Is a Job
Mike Monteiro

Content Strategy for Mobile
Karen McGrane

Just Enough Research
Erika Hall

On Web Typography
Jason Santa Maria

Responsible Responsive Design
Scott Jehl

Copyright © 2013 Dan Cederholm
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Editor-in-Chief: Mandy Brown
Editor: Erin Kissane
Technical Editor: Jina Bolton
Copyeditor: Tina Lee
Compositor: Rob Weychert
Ebook Production: India Amos

ISBN: 978-1-937557-13-3

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://abookapart.com

TABLE OF CONTENTS

chapter 1

Why Sass?9
chapter 2

Sass Workflow1 9
chapter 3

Using Sass32
chapter 4

Sass and Media Queries69
Resources90
References93
Acknowledgements95
Index96

FOREWORD

Looking back at the evolution of computer languages, it seems
every dozen years or so a new layer of abstraction is added.
“Ones and zeros” leveled up into assembly instructions, which
leveled up into compiled languages. Those compiled languages
evolved and we used them to create web browsers. Web brows-
ers digest languages like HTML, CSS, and JavaScript. Now we’re
ready to level up again.

HTML, CSS, and JavaScript have been enormously successful
languages for moving the web forward in unprecedented ways.
We’re building ever-bigger and more complex websites. That’s
a beautiful thing. But we’ve come to the point where we need
to take the next step in making what we build more manageable
and maintainable. We can get there through abstraction.

CSS is in the most dire need. These days, HTML is generally
produced through backend code and templates which provide
the abstraction we need. As a programming language, JavaScript
already has the tools of abstraction baked in. CSS has no abstrac-
tion at all and is highly repetitive. While that simplicity was key
to its adoption, it makes it unwieldy for us today. It’s CSS’s turn
to level up!

Sass, as Dan will teach you in this book, has all the tools
of abstraction we need. Repetitive values become variables.
Repetitive groups of styles become extends. Complex rulesets
and tedious vendor prefixing become mixins. With those trans-
lations comes CSS that is manageable and maintainable at any
scale.

Moving to Sass isn’t a comfortable transition for some. Dan
knows that all too well. He has been working with and teaching
CSS to the world since before I knew what a div was. But Dan
is a craftsman of the web. Just as a craftsman of wood knows
when his chisel is dull, Dan knew that working directly in CSS
these days is just like that dull chisel: you can do it, but you’re
liable to hurt yourself.

By the time you finish this book and give Sass a real try on
your first project, you’ll be a master of 95% of the important,
truly value-adding parts of Sass. Let Dan be your guide. Learn
that Sass doesn’t make your job harder, it makes it easier.

—Chris Coyier

 	 Why Sass?	 9	

WHY SASS?1
I was a reluctant believer in Sass. I write stylesheets by hand!
I don’t need help! And I certainly don’t want to add extra com-
plexity to my workflow. Go away!

That was the thinking anyway. But the reality is that Sass (and
other CSS preprocessors) can be a powerful ally—a tool that any
style-crafter can easily insert into their daily work. It took me a
while to come around, but I’m sure glad that I did.

And that’s the reason I wanted to write this little book. To
share how I’ve been able to use Sass to be more efficient, while
maintaining the process I’ve become comfortable with from
writing CSS for the last ten years. I had many misconceptions
about Sass that prevented me from giving it a go, initially. I was
worried I’d have to completely alter the way I write and manage
stylesheets. As CSS can be fragile at times, it’s understandable
for its authors to be somewhat protective about their creation.
Can I get an amen?

Ahem.

	 10 	 SASS FOR WEB DESIGNERS

So, I’m here to show you how Sass doesn’t have to disrupt
your process and workflow, and how it can make your life easier.
I’ll demonstrate the various aspects of Sass, how to install it, how
to use it, and how it’s helped me in my own projects. With any
luck, I just might make you a believer as well.

THE SASS ELEVATOR PITCH
Ever needed to change, say, a color in your stylesheet, and found
that you had to find and replace the value multiple times? Don’t
you wish CSS allowed you to do this?

$brand-color: #fc3;

a {

 color: $brand-color;

}

nav {

 background-color: $brand-color;

}

What if you could change that value in one place and the
entire stylesheet reflected that change? You can with Sass!

Or how about repeated blocks of styles that are used in vari-
ous locations throughout the stylesheet?

p {

 margin-bottom: 20px;

 font-size: 14px;

 line-height: 1.5;

}

footer {

 margin-bottom: 20px;

 font-size: 14px;

 line-height: 1.5;

}

 	 Why Sass?	 11	

Wouldn’t it be fantastic to roll those shared rules into a reus-
able block? Again, defined only once but included wherever
you needed them.

@mixin default-type {

 margin-bottom: 20px;

 font-size: 14px;

 line-height: 1.5;

}

p {

 @include default-type;

}

footer {

 @include default-type;

}

That’s also Sass! And those two extremely simple exam-
ples barely scratch the surface as to how Sass makes authoring
stylesheets faster, easier, and more flexible. It’s a welcome helper
in the world of web design, because anyone that’s created a
website knows…

CSS IS HARD
Let’s face it: learning CSS isn’t easy. Understanding what each
property does, how the cascade works, which browser supports
what, the selectors, the quirks, and so forth. It’s not easy. Add on
top of that the complexity of the interfaces we’re building these
days, and the maintenance that goes along with that and—wait,
why are we doing this again? It’s a puzzle, and some of us enjoy
the eventual completion.

Part of the problem is that CSS wasn’t originally designed
to do the things we do with it today. Sure, progress is moving
along at a nice clip thanks to rapid browser innovation and
implementation of CSS3 and beyond. But we still need to rely
on techniques that are, for all intents and purposes, hacks. The
float property, for example, was designed to simply align an

	 12 	 SASS FOR WEB DESIGNERS

image within a block of text. That’s it. Yet we’ve had to bend
that property to lay out entire interfaces.

Our stylesheets are also immensely repetitive. Colors, fonts,
oft-used groupings of properties, etc. The typical CSS file is an
extremely linear document—the kind of thing that makes an
object-oriented programmer want to tear their hair out. (I’m not
an object-oriented programmer, but I have very little hair left.
Read into that as you may).

As interfaces and web applications become more robust and
complex, we’re bending the original design of CSS to do things
it never dreamed of doing. We’re crafty like that. Fortunately,
browser makers adopt new CSS features far more rapidly these
days, with more efficient and powerful properties and selectors
that solve the problems today’s web poses. Features like new
layout options in CSS3, border-radius, box-shadow, advanced
selectors, transitions, transforms, animation, and so on. It’s an
exciting time. And yet, there’s still a lot missing from CSS itself.
There are holes to be plugged, and the life of a stylesheet author
should be a lot easier.

The DRY principle

If we peer into the world of software engineering (and I much
prefer to peer than hang out and get comfortable there), we can
quickly see how organization, variables, constants, partials,
etc., are an ingrained, crucial way of working for folks building
complex systems.

You may have heard of the “don’t repeat yourself ” (DRY)
principle. Coined and defined by Andy Hunt and Dave Thomas
in their book, The Pragmatic Programmer (http://bkaprt.com/
sass/1/), DRY declares:

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

The idea is that duplicating code can cause failure and con-
fusion for developers (http://bkaprt.com/sass/2/). It’s common

http://bkaprt.com/sass/1/
http://bkaprt.com/sass/1/
http://bkaprt.com/sass/2/

 	 Why Sass?	 13	

sense as well: write commonly-repeated patterns once, and
reuse those bits throughout the application. It’s more efficient
and far easier to maintain code this way.

CSS is anything but DRY. At times, it drips with repeated
rules, declarations, and values. We’re constantly writing the
same snippets of code for colors, fonts, and frequently-used
patterns of style throughout our stylesheets. One look through
a decent-sized CSS file, and a DRY software developer will weep,
first with bewilderment, then frustration.

“How the !@#$ do you maintain this?!” they’ll ask.
“Have I also told you about IE bugs?” you’ll reply with a bit

of self-loathing.

So why is CSS so difficult to work with?

We can gather a hint of understanding why CSS has had its syn-
tax limitations over the years from an essay by CSS co-inventor,
Bert Bos (http://bkaprt.com/sass/3/):

CSS stops short of even more powerful features that
programmers use in their programming languages: macros,
variables, symbolic constants, conditionals, expressions over
variables, etc. That is because these things give power-users
a lot of rope, but less experienced users will unwittingly hang
themselves; or, more likely, be so scared that they won’t even
touch CSS. It’s a balance. And for CSS the balance is different
than for some other things.

The original architects of CSS were concerned with adoption.
They (rightfully) wanted as many people as possible creating
websites. They wanted CSS to be powerful enough to style
web pages and separate content from presentation, while being
easy to understand and use. I can certainly respect that. At the
same time, we have work to do, and that work is getting more
complicated, more nuanced, and more challenging to maintain
and to future-proof.

http://bkaprt.com/sass/3/

	 14 	 SASS FOR WEB DESIGNERS

Fortunately, there are options to help us out here, and one
of them is Sass.

WHAT IS SASS?
Sass is a CSS preprocessor—a layer between the stylesheets you
author and the .css files you serve to the browser. Sass (short
for Syntactically Awesome Stylesheets) plugs the holes in CSS
as a language, allowing you to write DRY code that’ll be faster,
more efficient, and easier to maintain (Fig 1).

The Sass website (http://bkaprt.com/sass/4/) describes itself
succinctly:

Sass is a meta-language on top of CSS that’s used to describe the
style of a document cleanly and structurally, with more power
than flat CSS allows. Sass both provides a simpler, more elegant
syntax for CSS and implements various features that are useful
for creating manageable stylesheets.

So while normal CSS doesn’t yet allow things like variables,
mixins (reusable blocks of styles), and other goodies, Sass pro-
vides a syntax that does all of that and more—enabling “super
functionality” in addition to your normal CSS. It then trans-
lates (or compiles) that syntax into regular ol’ CSS files via a
command-line program or web-framework plugin.

More specifically, Sass is an extension of CSS3, and its SCSS
(“Sassy CSS”) syntax—which we’ll talk about in just a moment—
is a superset of CSS3. Meaning, any valid CSS3 document is
a valid SCSS document as well. This is integral to Sass being
something you can “ease into.” Getting started with Sass syntax
is painless, and you can use as little or as much as you’d like.
Which also means converting an existing stylesheet from CSS
to SCSS can be done in stages, as you learn and pick up more of
Sass’s functionality.

Later, when you’ve become fluent with Sass (and it won’t take
long), it really does feel like a natural extension of CSS—as if it’s
filling holes we all wish were filled by the CSS spec itself. This

http://bkaprt.com/sass/4/

 	 Why Sass?	 15	

is why, once I started using Sass, I never once thought it was
awkward or laborious—it just feels like CSS should feel. Once
you try it, you’ll likely stick with it permanently.

Furthermore, Sass is helping CSS get better. By fast-tracking
certain features that aren’t currently possible without the help of
a preprocessor, it’s giving CSS authors real-world implementa-
tion and feature experimentation. When and if it makes sense,
certain Sass functionality could very well inform future CSS
specifications.

SASS SYNTAX
There are actually two different syntaxes in Sass. The latest is
the aforementioned SCSS syntax. SCSS files use an .scss file
extension. This is the syntax I prefer using and advocate for
these reasons:

•	 Since SCSS is a superset of CSS3, I can write CSS as I have
for the last ten years and it’ll still work just fine.

•	 It’s easy to gradually convert existing stylesheets to use Sass’s
functionality.

•	 It doesn’t require a shift in code formatting.

Fig 1: Sass converts its own “power syntax” to plain old CSS.

	 16 	 SASS FOR WEB DESIGNERS

A simple SCSS example

Here’s an example of how SCSS syntax works. It defines a vari-
able and uses that variable in a CSS declaration.

$pink: #ea4c89;

p {

 font-size: 12px;

 color: $pink;

}

p strong {

 text-transform: uppercase;

}

Which will compile to:

p {

 font-size: 12px;

 color: #ea4c89;

}

p strong {

 text-transform: uppercase;

}

That should look very familiar, aside from the $pink vari-
able, and we’ll go into variables later in the book. SCSS works
around the CSS you already know how to write. And for that,
I very much like it.

The original “indented” Sass syntax

The original Sass syntax, on the other hand, is a different ani-
mal. Some folks prefer its stripped-down, no-curly-braces-or-
semicolons, indented syntax. If you’re used to the terseness of
programming languages like Ruby or Python, the Sass syntax
will look familiar, and you might feel more at home.

Here’s the simple example in the original Sass syntax, which
will compile exactly the same way as the previous SCSS snippet.

 	 Why Sass?	 17	

$pink: #ea4c89

p

 font-size: 12px

 color: $pink

p strong

 text-transform: uppercase

Gone are the braces and semicolons, leaving only whitespace
and indents to inform the structure of the declarations. It sure is
cleaner and simpler, and some of you may gravitate toward that.
It speeds up the initial authoring and cleans up the otherwise
noisy code. But for me, I still prefer SCSS, with its closer align-
ment to normal CSS, for the reasons stated earlier.

The examples in the chapters that follow will use the SCSS
syntax. If you prefer the leaner Sass syntax, it’s easy to convert.
All of the Sass functionality that we’ll dive into can be applied
to either syntax. It’s a matter of preference.

SASS MISCONCEPTIONS
I mentioned earlier that I was reluctant to try Sass. This was
partly due to a lot of misconceptions I had prior to using it. Do
I need to know Ruby or advanced command-line shenanigans?
Will I need to completely change the way I’ve been writing
stylesheets? Will the CSS it outputs be bloated and unreadable?

Thankfully, the answer is “nope” for each of those questions,
of course—but I do hear them pop up whenever someone men-
tions Sass on various internet channels. Let’s clear up a few
things.

I’m afraid of the command line!

I am by no means a command-line expert, but I’ve learned a
bit here and there over the years—just enough to get me into
trouble. I’m not afraid to traverse the file system with it or use
Git commands, etc.

	 18 	 SASS FOR WEB DESIGNERS

That said, I sympathize with designers and front-end de-
velopers who don’t want to go there. There’s a command-line
phobia that exists among some folks. For Sass, there’s very little
command-line action required—in fact, a single command is all
you need to grasp. Additionally, there are apps and web frame-
works that will obviate the need for the command line. (I’ll be
introducing those in the next chapter).

So, if you’re a command-line avoider, don’t let that stop you
from trying Sass!

I don’t want to change the way I write CSS!

This was the misconception that I suffered from. I’m particular
about the way my stylesheets are set up and organized. There’s a
certain amount of craft that goes into the document. But remem-
ber, since the SCSS syntax is a superset of CSS3, you don’t have
to change anything about the way you write CSS. Commenting,
indenting, or not indenting, all your formatting preferences can
remain the same when working in .scss files. Once I realized
this, I could dive in without fear.

I don’t want Sass to change the way I design!

On the flip side, Sass won’t solve all of your problems or cure
your bad habits. Inefficient, bloated stylesheets can be just as
inefficient and bloated when using Sass. Good organization
and smart thinking still apply here. In fact, there are instances
where Sass can magnify bad practices, and we’ll go into that a
bit as well. But when used properly and intelligently, Sass can
be such a massive assist in creating websites.

Okay. Now that we have the particulars out of the way, let’s start
having some fun. I think you’ll be amazed at what Sass can do.
In the next chapter, we’ll set up our workflow—how Sass can
fit into your process and how easy it is to use the command-line
or apps. Let’s get Sassing, people.

 	 Sass Workflow	 19	

Now that we know what Sass is, let’s get set up so that we can
start using it. Our first task is to install it on your computering
device of choice. I mentioned in Chapter 1 that Sass is a program
written in Ruby, which translates its native syntax into plain
CSS. So, before we start using Sass, we need to install Sass.

INSTALLING SASS ON A MAC
If you’re on a Mac (and hooray for you, should you be so lucky),
installing Sass couldn’t be simpler. Mac OS X comes preinstalled
with Ruby, and Sass is packaged as a Ruby “gem,” which is a
clever programmer term for a Ruby application.

Simply fire up Terminal.app (don’t panic!), and at the prompt
type the following and hit enter:

$ gem install sass

SASS
WORKFLOW2

	 20 	 SASS FOR WEB DESIGNERS

That wasn’t so bad, right? After you hit enter, you’ll see the
following results stream by in Terminal:

Fetching: sass-3.2.10.gem (100%)

Successfully installed sass-3.2.10

1 gem installed

Installing ri documentation for sass-3.2.10...

Installing RDoc documentation for sass-3.2.10...

Congratulations! You’ve just installed Sass.
At the time of this writing, the latest official version of Sass is

3.2.10, and Terminal is nice enough to relay that bit of info to us.

Installing the latest pre-release version

You can also choose to live on the bleeding edge, and install the
latest alpha version by adding a pre flag at the end of the com-
mand. Using the latest alpha is not only safe, but it also enables
you to take advantage of the latest functionality.

To get the latest and greatest, type this in the terminal prompt
and hit enter:

$ gem install sass --pre

You’ll see the results stream by once again, this time confirm-
ing the 3.3.0 alpha has been installed.

Fetching: sass-3.3.0.alpha.3.gem (100%)

Successfully installed sass-3.3.0.alpha.3

1 gem installed

Installing ri documentation for sass-3.3.0.alpha.3...

Installing RDoc documentation for sass-3.3.0.alpha.3...

You’re now living on the edge, and I salute your daring leap
of faith.

 	 Sass Workflow	 21	

INSTALLING SASS ON WINDOWS
Unlike Mac OS X, Windows doesn’t come with Ruby pre-in-
stalled. The official Sass website recommends RubyInstaller for
Windows to get things running on your PC (http://bkaprt.com/
sass/5/). Once Ruby is installed, you’ll be able to follow the rest
of the commands discussed in this chapter.

TELLING SASS WHICH FILES TO WATCH
Okay. We’ve installed Sass, so now what? We need to tell Sass
which files to “watch.” Meaning, while we’re editing a stylesheet,
we want Sass to monitor that file and convert the .scss file with
all our nifty Sass syntax to the browser-ready .css file every time
we make changes. There are a few ways to do this:

•	 A simple command via the command line.
•	 A desktop app (there are several) that will help you manage

your Sass files and their output.

Let’s tackle the command-line option first. And fear not! It’s
simple. Essentially the command tells Sass to watch a specified
.scss file, and convert it to a target .css file.

For example:

$ sass --watch screen.scss:screen.css

After you run the above command, Sass will start monitoring
any changes made to screen.scss. You’ll see this message in the
terminal after hitting return:

>>> Sass is watching for changes. Press Ctrl-C to stop.

If the file is updated, Sass will convert and overwrite screen.
css automagically. In other words, every time you save changes
in your Sass document, the CSS file will update instantaneously.

http://bkaprt.com/sass/5/
http://bkaprt.com/sass/5/

	 22 	 SASS FOR WEB DESIGNERS

The file names don’t have to match. For instance, this would
work just as well (though it might be confusing):

$ sass --watch werewolf.scss:vampire.css

Furthermore, the files don’t have to be in the same directory.
In fact, I find it useful to separate my .scss files from my .css
files. This isn’t a requirement, but it helps keep things organized.

Sass File Organization

Figure 2.1 shows a typical setup, with a main stylesheets
directory, which contains the Sass-generated .css files and a
sass directory that contains all the .scss that I’m working with.

You can also tell Sass to watch an entire directory, rather
than just a single stylesheet. So using the above file structure, I
could use the following watch command to monitor changes on
any of the .scss files in my project (provided I’m currently in
the -/ directory that holds my stylesheets and images in the
terminal):

$ sass --watch stylesheets/sass:stylesheets

Fig 2.1: A typical directory-organization structure for Sass files.

 	 Sass Workflow	 23	

USING APPS INSTEAD OF THE COMMAND LINE
The commands we’ve gone over so far are extremely simple,
and I have faith that you, astute front-end crafter that you are,
wouldn’t find it difficult to add those bits of typing to your
workflow. That said, there are desktop applications that make
it even easier to manage the monitoring and output of Sass files.
They’re worth a look regardless of your comfort level with the
command line.

Scout

Scout (http://bkaprt.com/sass/6/) is a free desktop app for both
Mac and Windows that provides “a self-contained Ruby environ-
ment, letting you effortlessly manage all of your Sass projects
with a handful of clicks.” In other words, Scout gives you a

Fig 2.2: The Scout website.

http://bkaprt.com/sass/6/

	 24 	 SASS FOR WEB DESIGNERS

Fig 2.3: Scout’s dead simple setup-configuration screen.

Fig 2.4: As Scout watches your Sass files, the “Log” keeps you updated with its
compiling status.

 	 Sass Workflow	 25	

nice, visual interface to set up your watched directories and files
rather than using the command line (Fig 2.2–Fig 2.3).

Once you’ve chosen input and output folders, simply click the
play button for your project and Scout will start monitoring files.
The “Log” section will display the terminal updates (Fig 2.4).

Scout is a straightforward and convenient way to completely
avoid the command line if that’s your thing (and to avoid Ruby
installation if you’re running Windows).

CodeKit

Like Scout, CodeKit (http://bkaprt.com/sass/7/; for Mac OS only)
compiles your Sass files with a simple GUI. But it also com-
piles LESS, Stylus, Haml, CoffeeScript, JavaScript, and others.
Additionally, CodeKit has other bells and whistles that optimize

Fig 2.5: The CodeKit website.

http://bkaprt.com/sass/7/

	 26 	 SASS FOR WEB DESIGNERS

files and images and automatically reload your browser as you
develop (Fig 2.5).

LiveReload

LiveReload (http://bkaprt.com/sass/8/) monitors any file changes,
including Sass compiling, as you work and automatically reloads
the browser. It’s available for both Mac and Windows (Fig 2.6).

Compass.app

Compass.app (http://bkaprt.com/sass/9/) is a little menu bar app
for Mac, Windows, and Linux that watches and compiles Sass
files for you (Fig 2.7).

In addition to desktop apps, some development frameworks
have built-in support for Sass. Ruby on Rails, for instance, will

Fig 2.6: The LiveReload website.

http://bkaprt.com/sass/8/
http://bkaprt.com/sass/9/

 	 Sass Workflow	 27	

auto-compile Sass files into CSS files when the stylesheets are
requested. Again, no command line required.

So, you can see there are several options should you find
yourself allergic to the command-line, though I hope it’s clear
that the commands for running Sass are few and uncomplicated.

Now that we have Sass installed and ready to watch files,
let’s move on and talk about output formatting, commenting,
and nesting.

CHOOSING AN OUTPUT STYLE
Like many of you, I learned web design by viewing source. It’s an
incredible luxury to be able to look under the hood of a website
to see how it’s put together. For that reason, I’ve always put a fair
amount of care into formatting my markup and stylesheets: the
way I indent declarations where the closing brackets go, how I
group sections of the stylesheet using whitespace, etc. All of this
might seem like unnecessary particularity, but since our CSS is

Fig 2.7: Compass.app’s menubar options.

	 28 	 SASS FOR WEB DESIGNERS

a potential learning tool for others, we’re not just creating these
files for our own benefit.

With Sass, you’re no longer crafting that .css file. Instead,
you’re authoring the .scss file that no one sees, and Sass’s
output of the final might differ from your own formatting pref-
erence. It was this (admittedly OCD-ish) formatting control
trade-off that initially turned me off and prevented me from
using Sass. That may sound ridiculous, but if the stylesheet was
a product of my craftsmanship, I very much cared about how it
was organized and formatted.

Eventually I got over it—so much so, that I wrote this book.
In the end, the formatting differences were nitpicks. The result-
ing files are still perfectly human-readable. In fact, Sass offers
several output styles to choose from, and it’s a good time to go
over those now.

Nested (the default)

The default style that Sass spits out is nested, which indents each
rule to reflect the structure of the HTML it’s styling. Here’s an
example of the nested style:

ol {

 margin: 10px 0;

 padding: 10px 0; }

 ol li {

 font-size: 2em;

 line-height: 1.4; }

 ol li p {

 color: #333; }

Expanded

The expanded style is a more typical format similar to stylesheets
that are crafted by hand. For those viewing source on your
amazing CSS, this format will be most familiar.

 	 Sass Workflow	 29	

Here’s an example of the expanded style:

ol {

 margin: 10px 0;

 padding: 10px 0;

}

ol li {

 font-size: 2em;

 line-height: 1.4;

}

ol li p {

 color: #333;

}

Each closing bracket appears on its own line at the end of
the declaration. Sass inserts a line break between declarations,
which seems unnecessary, but aside from that nitpick, this is
the style I like to use in my own projects. It closely resembles
the format I use when creating stylesheets by hand without Sass
(which is increasingly rare!).

To use this expanded style instead of the default nested style,
we just add a flag to the simple command that tells Sass to watch
files:

$ sass --watch --style expanded screen.scss:screen.css

Compact

The compact style puts each declaration on one line, empha-
sizing the selectors. The idea is you can easily scan the left
side to find visually grouped rules, with line breaks between.
Personally, I find it difficult to find particular rules, but I’ve
even seen some crazy CSS-ers hand-code their stylesheets in
this format because they like the balance between readability
and optimization.

	 30 	 SASS FOR WEB DESIGNERS

Here’s an example of the compact style:

ol { margin: 10px 0; padding: 10px 0; }

ol li { font-size: 2em; line-height: 1.4; }

ol li p { color: #333; }

And here’s how you specify the compact style when running
the sass command:

$ sass --watch --style compact screen.scss:screen.css

Compressed

The fourth and final style is compressed, which removes all
spaces and line breaks to reduce the stylesheet’s file size. It’s
nearly impossible to read, but that’s intentional: the compressed
style is meant for efficiency, not humans.

Here’s an example:

ol{margin:10px 0;padding:10px 0;}ol li{font- »

 size:2em;line-height:1.4;}ol li p{color:#333;}

And here’s how to specify the compressed style:

$ sass --watch --style compressed screen.scss:screen.css

Browsers don’t need spaces and line breaks, so why not take
them out to save space? I’d argue this format isn’t conducive to
learning from, but for large stylesheets, every byte counts, and
it’s nice of Sass to include this option.

The compressed style lends itself particularly well to highly-
trafficked web apps, in which the performance of every file is
crucial. For a personal website this may not matter as much, and
a more human-readable style might be a nicer option for those
who are looking to learn from your source code.

It’s also worth mentioning that with the prevalence of in-
spector tools built into browsers, the formatting of the .css
file matters less today than it did several years ago. Instead of
viewing source to dissect a stylesheet, you can inspect a website

 	 Sass Workflow	 31	

with browser tools to gain much stronger insight into how the
CSS is constructed, and these tools will display the CSS in an
easy-to-read format regardless of what the .css file looks like.

Whichever style you choose to output your CSS, it doesn’t
much matter for your own workflow. Since you’ll be living in
the .scss file for authoring, you can still do all the personalized
formatting you’re used to obsessing over. So treat the .scss as
your perfectly-crafted document, and let Sass output the results
into a stylesheet browsers (and humans) can understand.

DON’T EDIT YOUR OUTPUT!
At this point, it’s important to note that when you’re using Sass,
you’ll no longer be editing any .css files. The .scss files are
where you’ll live and breathe. The reason being, any changes
you make to the .css file will eventually get overridden as soon
as you update the .scss and Sass compiles the output. So stick
to the .scss and blissfully ignore its output.

WE HAVE A WORKFLOW, NOW LET’S WORK
We’ve talked about how to set up Sass. We’ve also talked about
how to add Sass to your workflow by using either the command
line or a third-party app. Finally, we talked about choosing an
output style for your Sass-ified CSS. We’re now ready to start us-
ing Sass, taking advantage of all the time-saving features it injects
into our daily work on increasingly complex web projects. Off
we go, to Chapter 3…

	 32 	 SASS FOR WEB DESIGNERS

In this chapter, I’ll share many of the features I use in Sass
every day in my own projects. I’ve whipped up a fictional proj-
ect specifically for this book so that we can talk about Sass’s
functionality in a real-world situation. The project is called
Sasquatch Records—a simple website for a record label that fo-
cuses on the supernatural musical stylings of mythical, elusive,
beasts (Fig 3.1).

The capabilities of Sass are overwhelming—it’s a very pow-
erful tool to help bring sanity to creating complex stylesheets.
With so many possibilities at our disposal, I’d like to point out
the parts of Sass I see as most valuable to the web designer, and
also the easiest to add to your workflow.

NESTING RULES
With Sass, you can nest CSS rules inside each other instead of
repeating selectors in separate declarations. The nesting also
reflects the markup structure.

USING SASS3

 	 Using Sass	 33	

For example, the main portion of the Sasquatch Records
header’s markup is structured like so:

<header role="banner">

 <div id="logo">

 </div>

	

 <h1>Sasquatch Records</h1>

 ...

</header>

When writing the SCSS, I can mirror that element nesting,
letting Sass build the full selectors. I personally like to put a
blank line before nested selectors to set them off from the CSS
properties that share that same nesting level:

Fig 3.1: Sasquatch Records, a fictional website I’ll be using to showcase some
Sass examples.

	 34 	 SASS FOR WEB DESIGNERS

header[role="banner"] {

 margin: 20px 0 30px 0;

 border-bottom: 4px solid #333;

 #logo {

 float: left;

 margin: 0 20px 0 0;

 img {

 display: block;

 opacity: .95;

 }

 }

 h1 {

 padding: 15px 0;

 font-size: 54px;

 line-height: 1;

 font-family: Jubilat, Georgia, serif;

 font-weight: bold;

 }

}

Which will compile into:

header[role="banner"] {

 margin: 20px 0 30px 0;

 border-bottom: 4px solid #333;

}

header[role="banner"] #logo {

 float: left;

 margin: 0 20px 0 0;

}

header[role="banner"] #logo img {

 display: block;

 opacity: .95;

}

header[role="banner"] h1 {

 padding: 15px 0;

 	 Using Sass	 35	

 font-size: 54px;

 line-height: 1;

 font-family: Jubilat, Georgia, serif;

 font-weight: bold;

}

Instead of repeating each element in the selector, Sass simpli-
fies things by nesting to show hierarchy. Do be careful when
nesting, of course. Sometimes you don’t need to be so verbose
with the selectors, and excessive nesting can actually hinder
readability. A few levels deep works great, and for module-
specific declarations, like the example above, Sass’s nesting is
a big time-saver.

NESTING NAMESPACED PROPERTIES
In addition to nesting rules, you can nest properties that share a
namespace in Sass (e.g., font-family, font-size, font-weight,
etc.) like so:

header[role="banner"] h1 {

 padding: 15px 0;

 font: {

 size: 54px;

 family: Jubilat, Georgia, serif;

 weight: bold;

 }

 line-height: 1;

}

That’ll compile to:

header[role="banner"] h1 {

 padding: 15px 0;

 font-size: 54px;

 font-family: Jubilat, Georgia, serif;

 font-weight: bold;

 line-height: 1;

}

	 36 	 SASS FOR WEB DESIGNERS

Similarly, there are many properties in the text- namespace.
We can use Sass nesting to save some retyping:

text: {

 transform: uppercase;

 decoration: underline;

 align: center;

}

And background- is another good example:

background: {

 color: #ea4c89;

 size: 16px 16px;

 image: url(sasquatch.png);

 repeat: no-repeat;

 position: top left;

}

Nesting in Sass means less typing, using indentation to reflect
the selector (and property) formation. It’s also a concept that’s
easy to grasp for anyone writing CSS—not a huge mental leap.

REFERENCING PARENT SELECTORS WITH &
Along with nesting rules and properties, Sass adds the ability to
reference the current parent selector using the ampersand as a
special placeholder.

For example, within a declaration for links, we can add hover
styles that override their color and border color:

a {

 font-weight: bold;

 text-decoration: none;

 color: red;

 border-bottom: 2px solid red;

 	 Using Sass	 37	

 &:hover {

 color: maroon;

 border-color: maroon;

 }

}

The ampersand inserts the parent selector, in this case a,
which will compile like so:

a {

 font-weight: bold;

 text-decoration: none;

 color: red;

 border-bottom: 2px solid red;

}

a:hover {

 color: maroon;

 border-color: maroon;

}

Here’s another example of using the ampersand to reference
the parent selector, in which different classes trigger different
styles:

li a {

 color: blue;

 &.alert {

 color: red;

 }

 &.success {

 color: green;

 }

}

Which will compile to:

	 38 	 SASS FOR WEB DESIGNERS

li a {

 color: blue;

}

li a.alert {

 color: red;

}

li a.success {

 color: green;

}

The ampersand is also useful in inserting overrides that hap-
pen in the presence of a specific class. For example, let’s say we
style paragraphs in the main section of the site, but we want a
slightly different style on a specific page. We add a class to the
body, and then we can use the ampersand to slip this overriding
declaration into the main one:

section.main p {

 margin: 0 0 20px 0;

 font-size: 18px;

 line-height: 1.5;

 body.store & {

 font-size: 16px;

 line-height: 1.4;

 }

}

Which will compile to:

section.main p {

 margin: 0 0 20px 0;

 font-size: 18px;

 line-height: 1.5;

}

body.store section.main p {

 font-size: 16px;

 line-height: 1.4;

}

 	 Using Sass	 39	

On store pages (or those with <body class="store">), para-
graphs will have slightly smaller type. But instead of writing an
entirely new declaration, we’ve nested it, using the ampersand
to create a unique case and letting Sass reconstruct the full selec-
tor. Again, this is time-saving stuff, while keeping related rules
in one group.

COMMENTING IN SASS
For comments within the stylesheet, Sass supports single-line
comments in addition to the standard, multi-line comments
in CSS.

For example:

/* This is a multi-line comment that will

appear in the final .css file. */

You can ensure important comments (copyright info, attribu-
tion, notes on hacks, etc.) appear in the compressed style output
by inserting an ! as the first character of the comment:

/*! This is a multi-line comment that will

appear in the final .css file. Even in compressed style.

*/

Single-line comments use the // prefix at the beginning of
each line and aren’t included in the final output, so you can safely
use them for private comments:

// This is a single-line comment.

// Single-line comments are removed from the .css file.

// So you can say whatever you'd like here.

// Confession: I genuinely enjoy listening to ABBA.

// And Hall & Oates.

In addition to hiding your questionable taste in music, single-
line comments are great for documenting your SCSS for internal

	 40 	 SASS FOR WEB DESIGNERS

team development. Commenting can be frequent and detailed
without the worry of adding extraneous bloat to the CSS output.

VARIABLES
Sass is full of incredibly helpful features that make our lives as
front-end crafters easier. But if I could choose only one of those
features as the most helpful, it’d be variables.

We repeat ourselves so often in a stylesheet. Colors, fonts,
background images, widths, etc.—there are patterns that require
an epic battle with find-and-replace should any of those patterns
be changed. Variables make all of that much simpler and easier
to maintain.

Variables in Sass are defined like regular CSS rules using the
$ like so:

$color-main: #333;

$color-light: #999;

$color-accent: #ea4c89;

$font-sans: "Proxima Nova", "Helvetica Neue", »

 Helvetica, Arial, sans-serif;

$font-serif: Jubilat, Georgia, serif;

Once defined, they can be invoked within declarations:

body {

 padding: 0 8%;

 font-family: $font-sans;

 font-size: 100%;

 color: $color-main;

 background: #fff url(../img/bg.jpg) repeat-x -80% 0;

}

Sass will replace the variables with their values in the
CSS output:

 	 Using Sass	 41	

body {

 padding: 0 8%;

 font-family: "Proxima Nova", "Helvetica Neue", »

 Helvetica, Arial, sans-serif;

 font-size: 100%;

 color: #333;

 background: #fff url(../img/bg.jpg) repeat-x -80% 0;

}

With Sass variables, wholesale changes to a stylesheet’s re-
peated patterns are updated in seconds, so you don’t need to
hunt through the entire file. Hooray!

Using variables for style guides

Jina Bolton wrote a great article on how Sass variables can help
with creating a style guide from a brand palette (http://bkaprt.
com/sass/10/). Says Jina:

To keep our style guide relevant, it lives in our internal-only
admin section on the very same application it describes. We
display our color palette alongside the relevant Sass variables and
since we’ve built the style guide into the application using the
same front-end, we can use the same variables we’re referencing
to render this palette. When we change values to these variables,
the palette updates automatically (Fig 3.2).

Rather than creating a static style guide that can become
outdated and irrelevant, using Sass variables to define a brand’s
palette means everyone can help keep the style guide up to date
and maintainable.

Using the style guide’s variables as a foundation, Jina goes on
to talk about tapping into Sass’s color functions to create varia-
tions within the brand palette.

For example, here’s the tiny color palette for the Sasquatch
Records site, using single-line comments to note each color since
it’s not crucial to the CSS output:

http://bkaprt.com/sass/10/
http://bkaprt.com/sass/10/

	 42 	 SASS FOR WEB DESIGNERS

$color-main: #333; // black

$color-light: #999; // grey

$color-accent: #ea4c89; // pink

Next, using the darken or lighten color function in Sass, we
can generate different shades of color that will always be based
on the brand palette.

Let’s darken the pink (#ea4c89) by 30%:

section.secondary {

 background: darken($color-accent, 30%);

}

When compiled, Sass will calculate the color by darkening the
original pink by 30% and referencing the hex color equivalent:

section.secondary {

 background: #8d1040;

}

We can also lighten colors:

Fig 3.2: Jina Bolton uses Sass to help create style guides.

 	 Using Sass	 43	

section.secondary {

 background: lighten($color-accent, 30%);

}

Which will compile to:

section.secondary {

 background: #fad5e3;

}

What about CSS variables?	

One of the terrific things about Sass (and CSS preprocessors
in general) is that it provides a testing ground for features that
might join the ranks of a proposed standard. In other words, Sass
can move at a quicker pace, implementing features that don’t
yet exist in the CSS spec. If these prove successful enough, they
could be folded into the standard.

Variables are a good example of this, and are probably the
most used feature of CSS preprocessors. The groundswell of
support for including variables as an official CSS feature has
been magnified by the use of Sass and LESS. Currently a W3C
working draft, “CSS Variables Module Level 1,” is being devel-
oped (http://bkaprt.com/sass/11/), and the latest WebKit nightly
builds have implemented support for variables. That means
native support for CSS variables is on its way.

Unfortunately, at the time of this writing, the CSS variable
syntax differs from that of Sass, and is not as elegant or simple
to grasp. For example, here is how you define a CSS variable for
the root element of the document:

:root {

 var-color-main: #333;

}

http://bkaprt.com/sass/11/

	 44 	 SASS FOR WEB DESIGNERS

And here is how you would use the variable within a
declaration:

#main p {

 color: var(color-main);

}

The proposal uses a var prefix to define the variable but a
var(variable-name) syntax for values. It’s a bit clumsy and
confusing, but this is a work in progress, and many are clamor-
ing for the Sass-like $foo syntax in both types of use. Here’s
hoping it eventually works out this way.

Most important, with browser support limited to bleeding-
edge versions of WebKit, CSS variables aren’t usable in produc-
tion anyway—yet another reason to stick to Sass.

MIXINS
Let’s move on to my second favorite Sass feature: mixins.
Where variables let you define and reuse values throughout
the stylesheet, mixins allow you to define and reuse blocks of
styles. Rather than typing the same rules over and over again
in various declarations, you can use mixins to define a group of
styles just once and refer to it anytime those styles are needed.

To illustrate, let’s create a mixin for a heading style that I’m
using in a few areas on the Sasquatch Records site (Fig 3.3).
While these titles may appear in various locations on the page,
their CSS is identical, which is a perfect situation for a mixin.

First, we’ll define a mixin in Sass using the @mixin directive at
the top of the .scss file. I’ll name it title-style, and I’ll define
the rules for margins and fonts:

@mixin title-style {

 margin: 0 0 20px 0;

 font-family: $font-serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

}

 	 Using Sass	 45	

Once it’s defined, we can now refer to this mixin anywhere
we’d like to insert those styles by using the @include directive.

On the Sasquatch site, we have a section of the stylesheet that
defines rules for the page’s main section, and we want the mixin
to style all <h2> elements:

section.main h2 {	

 @include title-style;

}

This will compile to:

section.main h2 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

}

But we also want to style <h3> elements in the sidebar the
exact same way. So, later in the stylesheet we can call the same
mixin, which will compile the same rules:

section.secondary h3 {	

 @include title-style;

}

This lets us avoid duplicating the shared styles—or adding a
class to the markup that both headings could theoretically share.

Fig: 3.3: Shared heading styles on the Sasquatch Records site.

	 46 	 SASS FOR WEB DESIGNERS

Mixins can be included with additional rules as well:

section.secondary h3 {	

 @include title-style;

 color: #999;

}

Which will compile to:

section.secondary h3 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #999;

}

Shared styles can be abstracted into mixins, and you’ll still
have the ability to override or augment those styles with addi-
tional rules. Powerful stuff!

Mixin arguments

Sass mixins can also take arguments that we pass to the mixin
when we call it. For example, let’s add an argument for specify-
ing a color along with our title-style mixin.

Specify arguments with variables inside parentheses when
defining the mixin:

@mixin title-style($color) {

 margin: 0 0 20px 0;

 font-family: $font-serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: $color;

}

 	 Using Sass	 47	

When calling the mixin, we can now pass a color to it (here
a lovely burnt orange), along with the other rules:

section.main h2 {	

 @include title-style(#c63);

}

Which will compile to:

section.main h2 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #c63;

}

Multiple arguments

You can pass multiple arguments by separating the values with
commas in the mixin definition:

@mixin title-style($color, $background) {

 margin: 0 0 20px 0;

 font-family: $font-serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: $color;

 background: $background;

}

And here’s the mixin being called from two different selec-
tors, passing differing arguments for color and background:

section.main h2 {	

 @include title-style(#c63, #eee);

}

	 48 	 SASS FOR WEB DESIGNERS

section.secondary h3 {	

 @include title-style(#39c, #333);

}

Which in this case will compile to:

section.main h2 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #c63;

 background: #eee;

}

section.secondary h3 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #39c;

 background: #333;

}

You can start to see how flexible mixins can be. Through
arguments, consistently-shared rules can sit alongside those
that differ slightly.

Defining defaults for arguments

When you use mixin arguments, it’s often convenient to define
defaults. That way, you simply call the mixin with no arguments,
if that’s the norm, but can still pass in overrides.

@mixin title-style($color, $background: #eee) {

 margin: 0 0 20px 0;

 font-family: $font-serif;

 	 Using Sass	 49	

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: $color;

 background: $background;

}

Even though we’ve defined a light gray default for the mixin’s
background, we can pass an argument for something different:

section.main h2 {	

 @include title-style(#c63);

}

section.secondary h3 {	

 @include title-style(#39c, #333);

}

Which will again compile to:

section.main h2 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #c63;

 background: #eee;

}

section.secondary h3 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: #39c;

 background: #333;

}

	 50 	 SASS FOR WEB DESIGNERS

Additionally, when you have multiple, default arguments
defined for a mixin, you can override those selectively without
having to redefine them all.

For example, let’s say our mixin defined values for both
$color and $background:

@mixin title-style($color: blue, $background: green) {

 margin: 0 0 20px 0;

 font-family: $font-serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: $color;

 background: $background;

}

And if we want the color to be the default blue, but we want
to override the background to be pink, we only need to pass
the background:

section.main h2 {	

 @include title-style($background: pink);

}

Which will compile to:

section.main h2 {

 margin: 0 0 20px 0;

 font-family: Jubilat, Georgia, serif;

 font-size: 20px;

 font-weight: bold;

 text-transform: uppercase;

 color: blue;

 background: pink;

}

A nice time-saver, which keeps those arguments defined in
one place (the mixin).

 	 Using Sass	 51	

CSS3 LOVES MIXINS
The use of mixins with arguments really shines in CSS3, where
we often repeat vendor-prefixed rules throughout the stylesheet
to achieve rounded corners, drop shadows, gradients, transi-
tions, etc. While the values might differ for these properties
throughout the design, so much is shared and repeated, and Sass
makes dealing with CSS3 “stacks” an absolute breeze. Can’t re-
member the syntax for creating CSS gradients? Make it a mixin!

border-radius

Here’s a mixin for handling CSS3 rounded corners in all brows-
ers, with an argument for the radius value:

@mixin rounded($radius) {

 -webkit-border-radius: $radius;

 -moz-border-radius: $radius;

 border-radius: $radius;

}

We can then make anything on the page rounded by calling
that mixin:

ol.slats li a img {

 float: left;

 margin: 0 10px 0 0;

 padding: 4px;

 border: 1px solid #ddd;

 @include rounded(3px);

}

div.module {

 padding: 20px;

 background: #eee;

 @include rounded(10px);

}

	 52 	 SASS FOR WEB DESIGNERS

Which will compile to:

ol.slats li a img {

 float: left;

 margin: 0 10px 0 0;

 padding: 4px;

 border: 1px solid #ddd;

 -webkit-border-radius: 3px;

 -moz-border-radius: 3px;

 border-radius: 3px;

}

div.module {

 padding: 20px;

 background: #eee;

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 border-radius: 10px;

}

box-shadow

Here’s another example using multiple arguments: a mixin for
creating drop shadows in CSS3 that gives us the ability to pass
in values for the vertical and horizontal positions of the shadow,
the amount of blur, and the color:

@mixin shadow($x, $y, $blur, $color) {

 -webkit-box-shadow: $x $y $blur $color;

 -moz-box-shadow: $x $y $blur $color;

 box-shadow: $x $y $blur $color;

}

Let’s add this mixin to the previous div.module example,
making the shadow appear straight from the top, down 1px,
with 2px of blur, and black at 50% opacity:

 	 Using Sass	 53	

div.module {

 padding: 20px;

 background: #eee;

 @include rounded(10px);

 @include shadow(0, 1px, 2px, rgba(0,0,0,.5));

}

Which will compile to:

div.module {

 padding: 20px;

 background: #eee;

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 border-radius: 10px;

 -webkit-box-shadow: 0, 1px, 2px, rgba(0,0,0,.5);

 -moz-box-shadow: 0, 1px, 2px, rgba(0,0,0,.5);

 box-shadow: 0, 1px, 2px, rgba(0,0,0,.5);

}

No need to write those vendor-prefix stacks over and over.
Write once, reuse whenever you’d like.

CSS3 gradients

CSS3 gradient syntax is ugly. It differs depending on the browser,
it’s not easy to remember, and historically the spec has evolved
quite a bit, forcing authors to update their stylesheets. For all of
these reasons, Sass (and specifically the mixin) makes using CSS3
gradients bearable and future-proof. Should the spec change
again, we’ll only need to update the syntax once, in the mixin.

For example, let’s add a CSS linear gradient to the active tab
style on the Sasquatch Records design (Fig 3.4). To ensure the
gradient works in the most browsers possible and falls back to a
solid color should the browser not support CSS gradients, we’ll
need a hefty stack of properties:

	 54 	 SASS FOR WEB DESIGNERS

header nav[role="navigation"] ul li.active a {

 padding: 3px 8px;

 color: #fff;

 -webkit-border-radius: 4px;

 -moz-border-radius: 4px;

 border-radius: 4px;

 /* Fallback for sad browsers */

 background-color: #d42a78;

 /* Mozilla Firefox */

 background-image: -moz-linear-gradient(#ff70b1, »

 #d42a78);

 /* Opera */

 background-image: -o-linear-gradient(#ff70b1, »

 #d42a78);

 /* WebKit (Safari/Chrome 10) */

 background-image: -webkit-gradient(linear, left top, »

 left bottom, color-stop(0, #ff70b1), color-stop(1, »

 #d42a78));

 /* WebKit (Chrome 11+) */

 background-image: -webkit-linear-gradient(#ff70b1, »

 #d42a78);

 /* IE10 */

 background-image: -ms-linear-gradient(#ff70b1, »

 #d42a78);

 /* W3C */

 background-image: linear-gradient(#ff70b1, #d42a78);

}

Notice each vendor-prefixed property takes the same “from”
and “to” hex colors to create the gradient going from top to bot-
tom. Using a Sass mixin, we can make this much simpler to call
by plugging in the gradient’s colors as variables passed to the
mixin. Who can remember all of these variations each time a
gradient is needed? Let’s make this easier on ourselves.

First, let’s build a mixin called linear-gradient, taking out
the hex colors so that we can pass those in as $from and $to vari-
ables throughout the stylesheet using whatever hues we’d like.

 	 Using Sass	 55	

@mixin linear-gradient($from, $to) {

 /* Fallback for sad browsers */

 background-color: $to;

 /* Mozilla Firefox */

 background-image: -moz-linear-gradient($from, $to);

 /* Opera */

 background-image: -o-linear-gradient($from, $to);

 /* WebKit (Safari 4+, Chrome 1+) */

 background-image: -webkit-gradient(linear, »

 left top, left bottom, color-stop(0, $from), »

 color-stop(1, $to));

 /* WebKit (Chrome 11+) */

 background-image: -webkit-linear-gradient($from, $to);

 /* IE10 */

 background-image: -ms-linear-gradient($from, $to);

 /* W3C */

 background-image: linear-gradient($from, $to);

}

Fig: 3.4: Shared heading styles on the Sasquatch Records site.

	 56 	 SASS FOR WEB DESIGNERS

Notice that I’m using the $to color to specify the background-
color fallback for browsers that don’t support CSS gradients.

Thankfully, we only have to write this monstrosity once.
Now, when we want to create a simple linear gradient, we just
call the mixin with two colors of our choosing and Sass does
the rest. For the Sasquatch site, the declaration for the active
tab style goes like this:

&.active a {

 padding: 3px 8px;

 color: #fff;

 @include rounded(4px);

 @include linear-gradient(#ff70b1, #d42a78);

}

That is not only bearable, it just makes sense! As if it’s written
in English. And I can reuse this pattern, for say a blue button (Fig
3.5), on a different selector in the stylesheet without recalling all
that gradient syntax garbage:

button {

 padding: 5px 10px;

 color: #fff;

 @include rounded(6px);

 @include linear-gradient(#42b3e2, #1a6798);

}

As you may know, the linear gradient we’re using here is one
simple example, and CSS gradients are capable of much more
complexity, like color stops, radial gradients, multiple directions,
etc. Sass can help with those situations as well, abstracting any
shared patterns into a reusable mixin.

CREATING A MIXIN LIBRARY
Mixins are wonderful because they can be written once and used
throughout the stylesheet. But often these mixins are even re-
peated across projects. You’ll likely find yourself writing mixins
for common CSS3 properties like box-shadow, gradients, CSS

 	 Using Sass	 57	

transitions, and patterns like self-clearing floats, box-sizing,
form elements, etc. Wouldn’t it be efficient to also write all of
these once and reuse them for any project where you’re using
Sass?

@import

Enter the @import rule, which Sass extends to allow the import-
ing of multiple SCSS files, merging them into a single CSS file
when compiled. This is handy for a variety of reasons:

•	 A single CSS means fewer HTTP connections. Performance!
•	 Variables can be defined in their own file, then imported

whenever needed, regardless of layout and other page-spe-
cific styles.

•	 Imported SCSS files can contain project-agnostic mixins that
can be shared and reused.

Here’s how @import works in practice.
I have a mixins.scss file that’s imported to all my projects.

In that file I’ve defined some common patterns I’ll use in every
project. Here’s an example of what’s inside mixins.scss:

Fig 3.5: Gradient-ified buttons are easy with a Sass mixin.

	 58 	 SASS FOR WEB DESIGNERS

@mixin rounded($radius) {

 -webkit-border-radius: $radius;

 -moz-border-radius: $radius;

 border-radius: $radius;

}

@mixin shadow($x, $y, $blur, $color) {

 -webkit-box-shadow: $x $y $blur $color;

 -moz-box-shadow: $x $y $blur $color;

 box-shadow: $x $y $blur $color;

}

@mixin shadow-inset($x, $y, $blur, $color) {

 -webkit-box-shadow: inset $x $y $blur $color;

 -moz-box-shadow: inset $x $y $blur $color;

 box-shadow: inset $x $y $blur $color;

}

@mixin transition($property) {

 -webkit-transition: $property .2s ease;

 -moz-transition: $property .2s ease;

 -o-transition: $property .2s ease;

 transition: $property .2s ease;

}

@mixin box-sizing {

 -webkit-box-sizing: border-box;

 -moz-box-sizing: border-box;

 box-sizing: border-box;

}

@mixin linear-gradient($from, $to) {

 /* Fallback for sad browsers */

 background-color: $to;

 /* Mozilla Firefox */

 background-image: -moz-linear-gradient($from, $to);

 /* Opera */

 background-image: -o-linear-gradient($from, $to);

 /* WebKit (Chrome 11+) */

 background-image: -webkit-gradient(linear, »

 left top, left bottom, color-stop(0, $from), »

 color-stop(1, $to));

 /* WebKit (Safari 5.1+, Chrome 10+) */

 background-image: -webkit-linear-gradient($from, $to);

 	 Using Sass	 59	

 /* IE10 */

 background-image: -ms-linear-gradient($from, $to);

 /* W3C */

 background-image: linear-gradient($from, $to);

}

At the top of my main stylesheet (screen.scss in this case)
where I define all of my layout and other site-specific styles, I
use the @import rule to pull those in so that the mixins are avail-
able. I also import a reset stylesheet that’s reused in every project
(again saving on HTTP connections and avoiding copying and
pasting the same code) as well as a variables file where I keep
variables for site colors, fonts, etc. (Fig 3.6). That allows me to
import those same variables in other stylesheets—for example,
in other pages or sections of the same project, where the style
guide applies—without also importing the rest of the layout.

// Import other files

@import "reset.scss";

@import "variables.scss";

@import "mixins.scss";

// Site-specific styles

.foo {

 …

}

When Sass compiles the screen.css file, it’ll include ev-
erything needed from those @import-ed files. So, you have the
benefits of a single file download, with the flexibility of multiple
files that contain reusable code.

The Compass framework

With mixins, variable files, and @import, you can build your own
mighty CSS frameworks to save an immense amount of time
when starting new projects. Having complex CSS3 stacks and

	 60 	 SASS FOR WEB DESIGNERS

other oft-repeated patterns at your fingertips with just a line of
code means more time creating and less time wrangling code.

Taking that organizational advantage to the next level is
Compass (http://bkaprt.com/sass/12/), an open-source stylesheet
framework built on Sass by Chris Eppstein (a Sass core member
and all-around good guy). Compass offers many pre-written
CSS patterns, which will be updated as the properties evolve
and vendor prefixes can be stripped away. Compass also makes
image sprites and typographic systems easier to handle (Fig 3.7).

Fig 3.6: Use @import to merge chunks of your SCSS into one file.

http://bkaprt.com/sass/12/

 	 Using Sass	 61	

I always suggest creating your own frameworks, as it’s best
to understand what is happening with your code as much as
possible. But as a learning experience, other frameworks can be
incredibly beneficial—they let you see how others set up proj-
ects and increase their efficiency. And Compass is no exception.

The Bourbon library

The folks at design/development shop thoughtbot have put
together an extensive mixin library, called Bourbon (http://
bkaprt.com/sass/13/)—which, coincidentally, I’ve been drinking
too much of, with vermouth and bitters and muddled sugar and
fruit (Fig 3.8).

A little Googling will unearth many helpful Sassers sharing
their mixins on GitHub or their own sites. Chances are, that

Fig 3.7: The Compass website.

http://bkaprt.com/sass/13/
http://bkaprt.com/sass/13/

	 62 	 SASS FOR WEB DESIGNERS

CSS3 stack that looks ugly and unmaintainable already has a
mixin written for it, so take advantage of the community!

@extend

Ever find yourself writing a CSS class that has the same styles
as another class, except for just a few other rules?

Here’s an example. You have an alert message style with two
options at the top of the page. One style handles standard alerts
(Fig 3.9), while the second style handles positive alerts (Fig 3.10).
These styles are almost identical, save for the background color.

Typically, we might create a base class for normal alerts and
then a second class that overrides the background color only.

<h2 class="alert alert-positive">This is a positive »

 alert!</h2>

With the styles for each alert set up like so:

Fig 3.8: The Bourbon website.

 	 Using Sass	 63	

.alert {

 padding: 15px;

 font-size: 1.2em;

 font-weight: normal;

 text-transform: uppercase;

 line-height: 1;

 letter-spacing: 3px;

 text-align: center;

 color: #fff;

 background: $color-accent;	

 @include shadow(0, 1px, 2px, rgba(0,0,0,.5));

 @include rounded(10px);

}

.alert-positive {

 background: #9c3;

}

Fig 3.9–3.10: Two alert styles on the Sasquatch Records site.

	 64 	 SASS FOR WEB DESIGNERS

Instead of littering the markup with extra classes to handle
those small exceptions, we can use Sass’s @extend function to
“chain together” styles that are shared amongst multiple selec-
tors. Additionally, we can then add extra overriding rules to
make a new unique style without duplicating the shared styles.

So if we wanted to use @extend to handle the two types of
alert messages, we could simplify the markup to just one class:

<h2 class="alert-positive">This is a positive alert! »

 </h2>

Then use @extend to include the styles from the h2.alert
class, plus the background-color exception:

.alert-positive {

 @extend .alert;

 background: #9c3;

}

Sass will then efficiently compile the extended class like this:

.alert, .alert-positive {

 padding: 15px;

 font-size: 1.2em;

 font-weight: normal;

 text-transform: uppercase;

 line-height: 1;

 letter-spacing: 3px;

 text-align: center;

 color: #fff;

 background: #ea4c89;

 -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);

 -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);

 box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 border-radius: 10px;

}

 	 Using Sass	 65	

.alert-positive {

 background: #9c3;

}

Now, sure, we could’ve written our CSS this way from the
beginning, but the @extend syntax makes it faster—not to men-
tion it’s clearer which styles are shared between classes. It’s far
easier to wrap your head around what’s happening.

Using @extend also allows us to be terser in our semantics,
defining class names based on meaning rather than appearance.

Multiple @extends

You can also @extend multiple classes within a declaration,
which chains together all the styles from each class:

.alert {

 padding: 15px;

 font-size: 1.2em;

 text-align: center;

 background: $color-accent;

}

.important {

 font-size: 4em;

}

.alert-positive {

 @extend .alert;

 @extend .important;

 background: #9c3;

}

Which will compile to:

.alert, alert-positive {

 padding: 15px;

 font-size: 1.2em;

 text-align: center;

 background: #ea4c89;

}

	 66 	 SASS FOR WEB DESIGNERS

.important, .alert-positive {

 font-size: 4em;

}

.alert-positive {

 background: #9c3;

}

Again, Sass efficiently organizes things, grouping the shared
styles together using comma-separated selectors and then creat-
ing single declarations for any exceptions.

Using placeholder selectors with @extend

What if the class you’re extending exists solely for the purpose
of extending other styles? In other words, you might create a
class that’s not used on its own.

Enter placeholder selectors, which allow you to define “phan-
tom” classes that won’t appear in the outputted CSS on their
own. You can reference placeholders using @extend.

Let’s take a look at this in practice. We’ll create a class for
a block of styles that define a button. We’ll use a placeholder
selector, which in Sass means prefixing the class name with a %
instead of a period.

%button {

 padding: 10px;

 font-weight: bold;

 background: blue;

 border-radius: 6px;

}

We can call this rule set in other classes as we did previously,
using @extend.

.buy {

 @extend %button;

}

 	 Using Sass	 67	

.submit {

 @extend %button;

 background: green;

}

Sass will compile this like an extended class, but the %button
placeholder rule set won’t appear in the output:

.buy, .submit {

 padding: 10px;

 font-weight: bold;

 background: blue;

 border-radius: 6px;

}

.submit {

 background: green;

}

Placeholder selectors are especially helpful in creating blocks
of styles for design patterns that may or may not be used (in
frameworks, style guides, or starter templates, for example),
since unused placeholder classes won’t litter the compiled
stylesheet.

@extend versus @mixin

Where a mixin will write the same rules in each declaration
it’s called from, @extend will create multiple, comma-separated
selectors for shared styles. It’s good to keep that difference in
mind when you’re debating which to use.

For example, overuse of a mixin can result in a bloated CSS
file in which the contents of the mixin are present in the com-
piled CSS every time it’s called in Sass. If you find yourself using
a mixin over and over throughout the stylesheet, keep in mind
how that will compile, and consider whether it makes sense to
use @extend or turn those repeated styles into a class that gets
reused in the markup instead.

	 68 	 SASS FOR WEB DESIGNERS

Don’t over @extend yourself

Using @extend is a powerful way to share styles between classes,
but be careful; when used too much, the compiled CSS starts to
get a bit hairy. Extending the same class repeatedly throughout
the stylesheet can result in a monster declaration. When using
Sass, it’s easy to forget what the compiled stylesheet will ulti-
mately look like—make sure to keep tabs on how Sass outputs
your work.

Okay. You now have the power! We’ve covered the basics
of Sass: how to set it up, how the syntax works, how it can fit
neatly beside your current coding habits, and how to use the
core features through nesting, variables, mixins, and @extend.

Sass is capable of even more, if you want to dive deeper. In
the next chapter, we’re going to talk about how Sass can help
with responsive design and media queries. Let’s take the plunge.

 	 Sass and Media Queries	 69	

I wanted the main focus of this book to be the basics of Sass,
proving that Sass doesn’t have to mean ripping apart your work-
flow. But in this final chapter, I do want to talk about some ad-
vanced techniques with Sass and media queries that have greatly
simplified some otherwise complex CSS in my daily work.

Sass is as powerful as you want it to be. Using it for variables
and a few mixins will make your life easier. But it can go beyond
that if you want it to. I’d like to share how I’ve used Sass to
build responsive, HiDPI-capable projects, and how it once again
makes the heavy lifting quite manageable.

NESTED MEDIA QUERIES
One of the foundations of building responsive websites is the
CSS media query. The ability to “listen” to the browser’s view-
port for varying dimensions and then apply certain styles based
on those dimensions is the cornerstone of creating flexible
layouts that adapt to different devices.

SASS AND
MEDIA QUERIES4

	 70 	 SASS FOR WEB DESIGNERS

For instance, you may want to adjust the width of a contain-
ing element should the browser be less than 800 pixels wide,
using a media query:

section.main {

 float: left;

 width: 65%;

 font-size: 16px;

 line-height: 1.4;

}

@media screen and (max-width: 800px) {

 section.main {

 float: none;

 width: auto;

 }

}

In Sass, you can nest media queries inside the original declara-
tion, and they will “bubble up” into their own separate declara-
tions when the stylesheet is compiled. It’s wonderful.

section.main {

 float: left;

 width: 65%;

 font-size: 16px;

 line-height: 1.4;

 @media screen and (max-width: 800px) {

 float: none;

 width: auto;

 }

 @media screen and (max-width: 500px) {

 font-size: 12px;

 line-height: 1.4;

 }

}

 	 Sass and Media Queries	 71	

The above will compile to:

section.main {

 float: left;

 width: 65%;

 font-size: 16px;

 line-height: 1.4;

}

@media screen and (max-width: 800px) {

 section.main {

 float: none;

 width: auto;

 }

}

@media screen and (max-width: 500px) {

 section.main {

 font-size: 12px;

 line-height: 1.4;

 }

}

Nesting media queries avoids rewriting the selector
(section.main in this example) each time you’d like to make
adjustments for various breakpoints.

It’s also immensely convenient that the media-query declara-
tions slot right under the original selector. I’ve found it much
easier to understand what’s happening to an element under
varying viewports by having the media queries nearby in con-
text, rather than gathered at the end of the stylesheet or in a
separate document.

Using variables to define breakpoints

Media-query bubbling is a wonderful convenience that Sass
brings to responsive design, but there is still quite a bit of rep-
etition. In each declaration, we’re specifying the breakpoints
(800px and 500px in the previous example). Often while design-
ing, I tweak those breakpoints based on the particular design
I’m working on and observations on how the layout reacts,

	 72 	 SASS FOR WEB DESIGNERS

instead of relying on static device widths. In other words, those
breakpoints that you’re specifying in each nested media query
could change. It’d be great to define those once and be able to
edit them in one spot. Sass variables to the rescue!

Let’s create some variables for three breakpoints we’ll use in
our media queries. I’m going to name them something flexible
and not tied down to a specific device or finite value.

$width-small: 500px;

$width-medium: 800px;

$width-large: 1200px;

With the breakpoints defined as Sass variables, we can (as of
Sass 3.2) refer to these whenever we use nested media queries
throughout the document. For example:

section.main {

 font-size: 16px;

 line-height: 1.4;

 @media screen and (max-width: $width-large) {

 float: left;

 width: 65%;

 }

 @media screen and (max-width: $width-medium) {

 float: none;

 width: auto;

 }

 @media screen and (max-width: $width-small) {

 font-size: 12px;

 line-height: 1.4;

 }

}

Which will compile to:

 	 Sass and Media Queries	 73	

section.main {

 font-size: 16px;

 line-height: 1.4;

 @media screen and (max-width: 1200px) {

 float: left;

 width: 65%;

 }

 @media screen and (max-width: 800px) {

 float: none;

 width: auto;

 }

 @media screen and (max-width: 500px) {

 font-size: 12px;

 line-height: 1.4;

 }

}

If we later decide to tweak those breakpoints, we need only
edit the variables once, and Sass will take care of updating them
wherever we used them.

$width-small: 400px;

$width-medium: 760px;

$width-large: 1100px;

This helps tremendously during the initial development of a
responsive design, when those breakpoints are a moving target
depending on the design requirements and the way the design
needs to adapt.

Even math is possible here, as we can add to or subtract from
the breakpoint’s value:

@media screen and (max-width: $width-small + 1) {

 font-size: 12px;

 line-height: 1.4;

}

	 74 	 SASS FOR WEB DESIGNERS

Will compile to:

@media screen and (max-width: 401px) {

 font-size: 12px;

 line-height: 1.4;

}

While:

@media screen and (max-width: $width-small - 1) {

 font-size: 12px;

 line-height: 1.4;

}

Will compile to:

@media screen and (max-width: 399px) {

 font-size: 12px;

 line-height: 1.4;

}

Going a step further, you can also define an entire media
query as a variable (not just the numeric value):

$mobile-first: "screen and (min-width: 300px)";

@media #{$mobile-first} {

 #content {

 font-size: 14px;

 line-height: 1.5;

 }

}

Notice the interpolation brackets—#{}—surrounding the
$mobile-first variable. That’s a special way to alert Sass to
compile something within a selector or property name.

The above SCSS will compile to:

 	 Sass and Media Queries	 75	

@media screen and (min-width: 300px) {

 #content {

 font-size: 14px;

 line-height: 1.5;

 }

}

When you nest media queries within the declarations they
affect, variables save you a ton of repetition. But we can even
simplify things further with @content blocks, also introduced
in Sass 3.2.

Combining @content blocks and mixins

By using Sass’s @content directive, you can pass entire blocks
of styles to a mixin, and Sass will place those blocks back into
the declaration that calls the mixin. That sounds confusing, but
in practice it’s simple and handy.

Let’s create a responsive mixin that handles three different
breakpoints, with @content placeholders for whatever styles
we’d like to include for each breakpoint. We’ll also use variables
to define the small, medium, and large breakpoint widths as we
did earlier in the chapter.

$width-small: 400px;

$width-medium: 760px;

$width-large: 1200px;

@mixin responsive($width) {

 @if $width == wide-screens {

 @media only screen and (max-width: $width-large) { »

 @content; }

 }

 @else if $width == medium-screens {

 @media only screen and (max-width: $width-medium) »

 { @content; }

 }

	 76 	 SASS FOR WEB DESIGNERS

 @else if $width == small-screens {

 @media only screen and (max-width: $width-small) { »

 @content; }

 }

}

Notice Sass also supports @if and @else statements, which
we’re using to evaluate the $width variable we’ll pass when
including the mixin. For example, if we pass the mixin the
medium-screens variable, Sass will compile the media query
with our max-width set to the $width-medium variable (760px).
The @content placeholder allows us to further pass blocks of
styles to the mixin that get inserted inside the media query.

With this single mixin set up, we can now call it from any
declaration using a compact pattern that reflects the way we
think about things:

#content {

 float: left;

 width: 70%;

 @include responsive(wide-screens) {

 width: 80%;

 }

 @include responsive(medium-screens) {

 width: 50%;

 font-size: 14px;

 }

 @include responsive(small-screens) {

 float: none;

 width: 100%;

 font-size: 12px;

 }

}

Which will compile to:

 	 Sass and Media Queries	 77	

#content {

 float: left;

 width: 70%;

}

@media only screen and (max-width: 1200px) {

 #content {

 width: 80%;

 }

}

@media only screen and (max-width: 760px) {

 #content {

 width: 50%;

 font-size: 14px;

 }

}

@media only screen and (max-width: 400px) {

 #content {

 float: none;

 width: 100%;

 font-size: 12px;

 }

}

Magical! Sass feeds any styles to the appropriate media query
and reconstructs the declaration with everything in its right
place. Using @content blocks for writing contextually-placed
media queries makes responsive design a heck of a lot simpler—
with less repetition.

It’s also easier to grasp how an element will be adjusted across
device widths—such as how a heading’s font size will vary as
the width of the viewport narrows. The entire progression is
spelled out in one spot:

h1 {

 font-size: 40px;

 @include responsive(wide-screens) { font-size: »

 48px; }

	 78 	 SASS FOR WEB DESIGNERS

 @include responsive(medium-screens) { font-size: »

 32px; }

 @include responsive(small-screens) { font-size: »

 20px; }

}

Which will compile to:

h1 {

 font-size: 40px;

}

@media only screen and (max-width: 1200px) {

 h1 {

 font-size: 48px;

 }

}

@media only screen and (max-width: 760px) {

 h1 {

 font-size: 32px;

 }

}

@media only screen and (max-width: 400px) {

 h1 {

 font-size: 20px;

 }

}

Keep the output in mind

It’s important to point out that this method results in a lot of
repeated media queries for each selector in the compiled CSS.
Ideally, Sass would let us nest the queries to keep the contextual
connection of rules collected in one space, but then group shared
media query rules when compiled.

For example:

 	 Sass and Media Queries	 79	

blockquote {

 width: 100%;

 @include responsive(wide-screens) { width: 80%; }

}

figure {

 margin: 0 0 20px 0;

 @include responsive(wide-screens) { margin: 0 0 »

 30px 0; }

}

Would compile more efficiently, with shared rules wrapped
into one media query:

blockquote {

 width: 100%;

}

figure {

 margin: 0 0 20px 0;

}

@media only screen and (max-width: 1200px) {

 blockquote {

 width: 80%;

 }

 figure {

 margin: 0 0 30px 0;

 }

}

For a large stylesheet that uses responsive design with fre-
quent media queries for multiple viewports, this would reduce
the compiled CSS file quite a bit. Unfortunately, Sass doesn’t
(yet?) support this “aggregated media query bubbling,” as I’m
coining it, but for most projects, the trade-off of a slightly larger
compiled stylesheet is worth the ease and sensibility of nesting
media queries inline. So for now, that’s how we’ll roll.

	 80 	 SASS FOR WEB DESIGNERS

“RETINIZING” HIDPI BACKGROUND IMAGES
As if things weren’t complicated enough for us web designers,
the rise of High Dots Per Inch (HiDPI) screens has created an-
other challenge. Apple’s gorgeous Retina screens, for example,
squeeze twice the number of pixels compared to that of a nor-
mal display. That means beautiful clarity and saying goodbye to
fuzzy pixels! But only if you take the time to create graphics that
reflect this super-sharp new world.

For elements on the page, this typically means creating
images twice as large and compressing them to half their size
by using the width attribute in the markup. Alternatively, there
are craftier ways to handle selective image-serving via media
queries and JavaScript, such as Scott Jehl’s brilliant Picturefill
project (http://bkaprt.com/sass/14/).

To share an example of handling HiDPI images, let’s take
a look at the Sasquatch Records logo, which is 133×121 pixels
(Fig 4.1). For devices that support the extra pixels, we’ll create
a second version that’s twice as large (266×242) and reduce it to
133 pixels in the markup for twice the clarity (Fig 4.2):

Fig 4.1–Fig 4.2: Normal-resolution logo on the left, HiDPI version on the right.

http://bkaprt.com/sass/14/

 	 Sass and Media Queries	 81	

For background images, we simply use CSS media queries
(in modern browsers that support them) to determine whether
the display is HiDPI and render the appropriately sized image.

On the Sasquatch Records site, for instance, we have a little
list of social network links in the sidebar. Each link’s icon has a
background image specified in the stylesheet (Fig 4.3).

In the Dribbble link, the CSS to align a normal-resolution
icon to the left of the text might look like this:

ul.follow li.dribbble a {

 padding-left: 30px;

 background-repeat: no-repeat;

 background-position: 0 50%;

 background-image: url(../img/icon-dribbble.png);

}

For HiDPI displays, we override the icon with one that is
twice as large, and then “squeeze” it down to the right dimen-
sions using the CSS3 background-size property. To detect
whether the display is HiDPI, we use a media query and the
min-device-pixel-ratio property in CSS3 (which varies de-
pending on the browser vendor).

Fig 4.3: Social network links in the sidebar
of the Sasquatch Records site.

	 82 	 SASS FOR WEB DESIGNERS

@media (-webkit-min-device-pixel-ratio: 1.5),

 (min--moz-device-pixel-ratio: 1.5),

 (-o-min-device-pixel-ratio: 3/2),

 (min-device-pixel-ratio: 1.5),

 (min-resolution: 1.5dppx) {

 ul.follow li.dribbble a {

 padding-left: 30px;

 background-repeat: no-repeat;

 background-position: 0 50%;

 background-image: url(../img/icon-dribbble-2x.png);

 -webkit-background-size: 24px 24px;

 -moz-background-size: 24px 24px;

 background-size: 24px 24px;

 }

}

Essentially, we’re saying that if the display’s pixel ratio is at
least 1.5 times the normal density, let’s use a larger, 48×48 icon
(icon-dribbble-2x.png) and squash it down to 24×24 when
displayed on the screen.

The difference, when viewed on a HiDPI display, is stun-
ningly sharp. All those fuzzy edges disappear (Fig 4.4).

Fig 4.4: Crisp, Hi-DPI icons by the power
of Sass!

 	 Sass and Media Queries	 83	

As you can imagine, “retinizing” your interfaces can result in
a pile of repetition, referencing that media query and a second
image every time you’d like to override your normal-resolution
background images. Here’s where Sass can make this process
rather painless.

We can create a Sass mixin that handles all the heavy lift-
ing, even forming two different file names with a bit of crafty
concatenation.

Here’s the retinize mixin I use in my everyday projects—I’ll
break down each important section.

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media (-webkit-min-device-pixel-ratio: 1.5),

 (min--moz-device-pixel-ratio: 1.5),

 (-o-min-device-pixel-ratio: 3/2),

 (min-device-pixel-ratio: 1.5),

 (min-resolution: 1.5dppx) {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 -webkit-background-size: $width $height;

 -moz-background-size: $width $height;

 background-size: $width $height;

 }

 }

}

The first line of the mixin sets up the four arguments we need
to build the right compiled code:

•	 The file name
•	 The type of image (JPG, GIF, PNG)
•	 Image width on screen
•	 Image height on screen

	 84 	 SASS FOR WEB DESIGNERS

Those four arguments are listed like so:

@mixin retinize($file, $type, $width, $height) {

Calling the retinize mixin is as simple as plugging in those
four values anytime you’d like. For example, let’s call the mixin
for the Dribbble icon, a PNG that should be rendered at 24×24:

li.dribbble a {

 @include retinize('icon-dribbble', 'png', 24px, 24px);

}

li.flickr a {

 @include retinize('icon-flickr', 'png', 24px, 24px);	

}

li.facebook a {

 @include retinize('icon-facebook', 'png', 24px, 24px);

}

Back to the mixin itself, the second line forms the normal-
resolution background-image rule by stringing the arguments
together. Sass can concatenate!

background-image: url('../img/' + $file + '.' + $type);

We’re adding the file path to the image, then adding the file
name and the period and the file type, which will compile like
this:

background-image: url(../img/icon-dribbble.png);

With the normal background image in place, we’ll now add
the media query that will override that image with the @2× ver-
sion for devices that support a 1.5 pixel ratio or higher. Again,
we’re including all the vendor-prefixed properties to ensure this
will work across as many browsers as possible.

 	 Sass and Media Queries	 85	

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media (-webkit-min-device-pixel-ratio: 1.5),

 (min--moz-device-pixel-ratio: 1.5),

 (-o-min-device-pixel-ratio: 3/2),

 (min-device-pixel-ratio: 1.5),

 (min-resolution: 1.5dppx) {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 }

 }

}

Next we need a way to reference whatever selector we’re
applying this media query to, and that depends on where we’ve
called the mixin from. Fortunately, we can use the special &
placeholder, which you’ll remember from the previous chapter,
and which inserts whatever the “current selector” is. (In our
example case, it’s li.dribbble a).

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media (-webkit-min-device-pixel-ratio: 1.5),

 (min--moz-device-pixel-ratio: 1.5),

 (-o-min-device-pixel-ratio: 3/2),

 (min-device-pixel-ratio: 1.5),

 (min-resolution: 1.5dppx) {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 }

 }

}

	 86 	 SASS FOR WEB DESIGNERS

Notice also that we’re using Sass’s concatenation ability to
append a -2x to the file name to refer to the larger image. It’s
a good idea to settle on a naming convention like this—a short
bit of text that makes managing assets and calling file names in
Sass easier:

•	 Normal image: file-name.png
•	 @2× image for HiDPI: file-name-2x.png

You don’t need to use -2x; you can use whatever you’d like:
file-name-jumbo, file-name-twice-as-big, file-name-at-
two-times, etc. But I think -2x works just fine.

The final piece of the mixin is the background-size prop-
erty (and its -webkit- and -moz- prefixed equivalents), which
tells the browser what dimensions it’s going to stuff that larger
image into:

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media (-webkit-min-device-pixel-ratio: 1.5),

 (min--moz-device-pixel-ratio: 1.5),

 (-o-min-device-pixel-ratio: 3/2),

 (min-device-pixel-ratio: 1.5),

 (min-resolution: 1.5dppx) {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 -webkit-background-size: $width $height;

 -moz-background-size: $width $height;

 background-size: $width $height;

 }

 }

}

And that’s it—a reusable mixin for serving HiDPI background
images from any selector you’d like, just by creating two image
assets and one line of SCSS:

 	 Sass and Media Queries	 87	

li.dribbble a {

 @include retinize('icon-dribbble', 'png', 24px, 24px);

}

Mixins inside mixins!

Mixins can include other mixins. A mixinception, if you will.
Don’t worry, the universe won’t explode! In fact, we can go
a step further in DRY-ing up this code, extracting the vendor-
prefixed min-device-pixel-ratio rules into a variable and
the background-size property stack into its own mixin. Then
these extracted parts could be reused in other sections of the
stylesheet or additional mixins. The other advantage here is
keeping any vendor-prefixed properties in one spot so we can
edit or prune them if the specs change, or once prefixes are no
longer necessary (and won’t that be a celebratory day).

First, let’s replace the pixel-ratio portion of the media query
with a reusable variable. As mentioned earlier in the chapter, a
variable that appears within a selector needs special interpola-
tion characters around it:

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media #{$is-hidpi} {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 -webkit-background-size: $width $height;

 -moz-background-size: $width $height;

 background-size: $width $height;

 }

 }

}

Then we’ll define that variable with the stack of pixel-
ratio rules, which is also reusable elsewhere in the stylesheet
if needed:

	 88 	 SASS FOR WEB DESIGNERS

$is-hidpi: "(-webkit-min-device-pixel-ratio: 1.5), »

 (min--moz-device-pixel-ratio: 1.5), »

 (-o-min-device-pixel-ratio: 3/2), »

 (min-device-pixel-ratio: 1.5),(min-resolution: »

 1.5dppx)";

Next, let’s create a mixin for background-size that takes a
width and height attribute and includes the vendor-prefixed
properties as well as the “real,” un-prefixed one. Anytime we
want to use background-size on a selector, we can now call
this mixin:

@mixin background-size($width, $height) {

 -webkit-background-size: $width $height;

 -moz-background-size: $width $height;

 background-size: $width $height;

}

Let’s include this background-size mixin within the
retinize mixin, passing along the $width and $height variables
it’s already collecting:

@mixin retinize($file, $type, $width, $height) {

 background-image: url('../img/' + $file + '.' »

 + $type);

 @media #{$is-hidpi} {

 & {

 background-image: url('../img/' + $file + '-2x.' »

 + $type);

 @include background-size($width, $height);

 }

 }

}

And there you have it. We’ve refactored the original retinize
mixin to include code that can be reused in additional styles or

 	 Sass and Media Queries	 89	

mixins. That’ll reduce the amount of repetition throughout our
Sass code, and keep shared styles in as few places as possible for
future updates and maintenance.

WRAPPING UP
I hope this little pink book has helped you get started with Sass
and become familiar with its core features. I also hope that it’s
dispelled some of the misunderstandings that Sass sometimes
bears:

•	 You have to learn Ruby.
•	 You need to change your entire CSS process.
•	 You need to be an expert with the command line.

As we’ve discussed, it’s much simpler than that. But Sass can
be as powerful as you want it to be. At the least, it’s a fantastic
tool that can fit nicely beside your systems and workflow with-
out disturbing the CSS you’ve been writing for years (or if you’ve
only been writing CSS for months, well then…months—and
bravo!).

Now go simplify your stylesheets with reusable blocks of
Sassy CSS, save yourself a boatload of time, and, most important,
build awesome things!

	 90 	 SASS FOR WEB DESIGNERS

RESOURCES

Websites and articles

•	 Sass reference: The official documentation for all things Sass
•	 (http://bkaprt.com/sass/15/).
•	 The Sass Way: “...covers the latest news and topics on crafting

CSS using Sass and Compass.” Great articles and resources
on how to best put Sass to use (http://bkaprt.com/sass/16/).

•	 CSS Tricks: Chris Coyier has covered Sass pretty extensively,
and we share very similar views on how Sass can help the CSS
hand-coder (http://bkaprt.com/sass/17/). In particular, be sure
to check out his Sass Style Guide (http://bkaprt.com/sass/18/).

•	 Assembling Sass: Code School’s comprehensive course on
learning Sass, soup to nuts (http://bkaprt.com/sass/19/).

•	 Getting started with Sass: Great intro article on A List Apart
by David Demaree (http://bkaprt.com/sass/20/).

•	 Looking into the future of Sass: David Walsh assesses what’s
coming down the pipeline for future Sass features. Lots of
great insight on where Sass is headed (http://bkaprt.com/
sass/21/).

Mixin libraries

•	 Compass: An extensive framework for Sass created by Chris
Eppstein. Even if you’re not using Compass, the documenta-
tion is a goldmine for mixin ideas (http://bkaprt.com/sass/22/).

•	 Bourbon: Billing itself as “A simple and lightweight mix-
in library for Sass,” Bourbon offers a ton of great mixin
concepts from fellow Bostonians, thoughtbot (http://bkaprt.
com/sass/23/).

•	 Handy Sass Mixins: A nice collection of Sass mixins from
Jake Bresnehan (http://bkaprt.com/sass/24/).

http://bkaprt.com/sass/15/
http://bkaprt.com/sass/16/
http://bkaprt.com/sass/17/
http://bkaprt.com/sass/18/
http://bkaprt.com/sass/19/
http://bkaprt.com/sass/20/
http://bkaprt.com/sass/21/
http://bkaprt.com/sass/21/
http://bkaprt.com/sass/22/
http://bkaprt.com/sass/23/
http://bkaprt.com/sass/23/
http://bkaprt.com/sass/24/

 	 Resources	 91	

More Sass and responsive design

In particular, these two articles on responsive web design in Sass
and media queries helped me craft Chapter 4 (http://bkaprt.com/
sass/25/, http://bkaprt.com/sass/26/).

•	 Breakpoint: A plugin for Sass that makes writing media que-
ries even simpler (http://bkaprt.com/sass/27/).

•	 Susy: A helper for Compass and Sass for creating responsive
grid systems (http://bkaprt.com/sass/28/).

•	 Sassaparilla: A kick-start framework for creating responsive
web design projects using Compass and Sass. Also has a great
name (http://bkaprt.com/sass/29/).

Sass tools

•	 FireSass for Firebug: A handy Firefox add-on that will display
the original Sass filename and line number of Sass-compiled
stylesheets, for debugging (http://bkaprt.com/sass/30/).

•	 Developing with Sass and Chrome DevTools: A tutorial on
how to best use Chrome while developing with Sass. Some
of it is experimental, but you can bet more of this kind of
thing will emerge as Sass continues to gain steam (http://
bkaprt.com/sass/31/).

Other CSS preprocessors

While Sass is the subject of this little book, it’s not the only CSS
preprocessor out there. If you’ve caught the preprocessing bug
(and I surely hope you have), it might be worth checking out
these alternatives—noting how they differ from Sass.

LESS

LESS is another popular choice for designers and front-end
craftspeople. It’s very similar to Sass in that it also supports
variables, mixins, and other functions, but it uses a slightly

http://bkaprt.com/sass/25/
http://bkaprt.com/sass/25/
http://bkaprt.com/sass/26/
http://bkaprt.com/sass/27/
http://bkaprt.com/sass/28/
http://bkaprt.com/sass/29/
http://bkaprt.com/sass/30/
http://bkaprt.com/sass/31/
http://bkaprt.com/sass/31/

	 92 	 SASS FOR WEB DESIGNERS

different syntax. Like Sass’s SCSS, LESS is an extension of CSS,
which means it plays nicely with existing stylesheets and can
be gradually folded in (http://bkaprt.com/sass/32/).

LESS also has a client-side option for compiling, which serves
.less files to the browser that JavaScript compiles into regular
CSS when the page loads. It’s a handy way to work locally and
in development, as no command line or app needs to run the
conversion for you. However, client-side compiling is not rec-
ommended for production sites.

Like Sass, LESS has a command-line program as well as third-
party apps that convert LESS files into CSS files.

Feature-wise, in comparison to Sass, LESS does a little…well,
less. From my perspective, Sass has a more active development
cycle and community behind it, and is a bit more robust in its
functionality. That said, what LESS does support is the impor-
tant stuff—features that will help you write DRY stylesheets
more efficiently. You’re already winning if you’re using a pre-
processor, regardless of which one.

For a great comparison of Sass versus LESS, have a gander
at Chris Coyier’s thorough article, in which he breaks down
the differences and pros and cons (http://bkaprt.com/sass/33/).

These debates can at times become religious warfare, but the
key thing is to use what you’re most comfortable with. Both
will help immensely in easing the creation of smart stylesheets.

Stylus

Stylus is a bit younger than LESS and Sass, and it has a broad
feature set. Its syntax is more like Sass’s original syntax (optional
indenting, optional omission of braces and semicolons). I like
tools that don’t alter my normal workflow too much, so for that
reason I haven’t checked out Stylus extensively. But I’m men-
tioning it here because, again, if it feels right for you, then go
for it. The important thing is to take advantage of one of these
tools to make your life a little easier (http://bkaprt.com/sass/34/).

http://bkaprt.com/sass/32/
http://bkaprt.com/sass/33/
http://bkaprt.com/sass/34/

 	 References	 93	

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

	 1	 http://pragprog.com/the-pragmatic-programmer

	 2	 http://c2.com/cgi/wiki?DontRepeatYourself

	 3	 http://www.w3.org/People/Bos/DesignGuide/maintainability.html

	 4	 http://sass-lang.com/about.html

Chapter 2

	 5	 http://rubyinstaller.org

 	 6	 http://mhs.github.com/scout-app/

 	 7	 http://incident57.com/codekit

 	 8	 http://livereload.com

 	 9	 http://compass.handlino.com

Chapter 3

	 10	 http://blog.engineyard.com/2011/front-end-maintainability-with-sass-
and-style-guides

	 11	 http://www.w3.org/TR/css-variables/

	 12	 http://compass-style.org

	 13	 http://bourbon.io/

Chapter 4

	 14	 https://github.com/scottjehl/picturefill

Resources

	 15	 http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html

	 16	 http://thesassway.com

	 17	 http://css-tricks.com/search-results/?q=sass

	 18	 http://css-tricks.com/sass-style-guide/

	 19	 http://www.codeschool.com/courses/assembling-sass

http://pragprog.com/the-pragmatic-programmer
http://c2.com/cgi/wiki?DontRepeatYourself
http://www.w3.org/People/Bos/DesignGuide/maintainability.html
http://sass-lang.com/about.html
http://rubyinstaller.org
http://mhs.github.com/scout-app/
http://incident57.com/codekit
http://livereload.com
http://compass.handlino.com
http://blog.engineyard.com/2011/front-end-maintainability-with-sass-and-style-guides
http://blog.engineyard.com/2011/front-end-maintainability-with-sass-and-style-guides
http://www.w3.org/TR/css-variables/
http://compass-style.org
http://bourbon.io/
https://github.com/scottjehl/picturefill
http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html
http://thesassway.com
http://css-tricks.com/search-results/?q=sass
http://css-tricks.com/sass-style-guide/
http://www.codeschool.com/courses/assembling-sass

	 94 	 SASS FOR WEB DESIGNERS

	 20	 http://alistapart.com/article/getting-started-with-sass

	 21	 http://davidwalsh.name/future-sass

	 22	 http://compass-style.org/reference/compass/

	 23	 http://bourbon.io

	 24	 http://web-design-weekly.com/2013/05/12/handy-sass-mixins/

	 25	 http://thesassway.com/intermediate/responsive-web-design-in-sass-using-
media-queries-in-sass-32

	 26	 http://css-tricks.com/media-queries-sass-3-2-and-codekit/

	 27	 https://github.com/Team-Sass/breakpoint

	 28	 http://susy.oddbird.net

	 29	 http://sass.fffunction.co

	 30	 https://addons.mozilla.org/en-us/firefox/addon/firesass-for-firebug/

	 31	 http://net.tutsplus.com/tutorials/html-css-techniques/developing-with-
sass-and-chrome-devtools/

	 32	 http://lesscss.org

	 33	 http://css-tricks.com/sass-vs-less/

	 34	 http://learnboost.github.io/stylus/

http://alistapart.com/article/getting-started-with-sass
http://davidwalsh.name/future-sass
http://compass-style.org/reference/compass/
http://bourbon.io
http://web-design-weekly.com/2013/05/12/handy-sass-mixins/
http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32
http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32
http://css-tricks.com/media-queries-sass-3-2-and-codekit/
https://github.com/Team-Sass/breakpoint
http://susy.oddbird.net
http://sass.fffunction.co
https://addons.mozilla.org/en-us/firefox/addon/firesass-for-firebug/
http://net.tutsplus.com/tutorials/html-css-techniques/developing-with-sass-and-chrome-devtools/
http://net.tutsplus.com/tutorials/html-css-techniques/developing-with-sass-and-chrome-devtools/
http://lesscss.org
http://css-tricks.com/sass-vs-less/
http://learnboost.github.io/stylus/

 	 Acknowledgements	 95	

ACKNOWLEDGEMENTS
First and most importantly, I need to thank my partner in crime
at Dribbble, Rich Thornett. Rich cured my reluctance in using
Sass by way of relentless prodding and evangelism while we
worked on our little design community. It only took a whole
year. Thanks for being persistent, Rich!

I’d also like to thank A Book Apart for allowing me another go
around here. They are a fantastic team, and quite frankly make
it difficult to think of writing anywhere else. To Mandy Brown,
Jason Santa Maria, and Jeffrey Zeldman—thanks for creating
something wonderful for both readers and authors.

Special thanks to Managing Director Katel LeDu. You’ve kept
everything shipshape, and that ain’t always easy. Such a pleasure
working with you.

To Erin Kissane, thank you for making me sound like a bet-
ter writer than I actually am. It’s been an honor to have you do
that. And to Jina Bolton for being a wonderful technical editor
and ambassador for Sass.

A gigantic thanks to Hampton Catlin for inventing Sass, and
Nathan Weizenbaum and Chris Eppstein for developing Sass
and making it the indispensable tool that it is today.

And finally, thanks to you, for reading.

	 96 	 SASS FOR WEB DESIGNERS

@content 75
@extend function 62
	 multiple 65
@import rule 57

A
apps for Sass 23

B
breakpoints, setting 71
Bolton, Jina 41
border-radius mixin 51
Bos, Bert 13
Bourbon 61
box-shadow mixin 52

C
color functions 42
commenting 39
compact style 29
Compass framework 59
compressed style 30
concatenation 84
CSS3 gradients 53

D
DRY (don’t repeat yourself)

principle 12

E
elevator pitch for Sass 10
Eppstein, Chris 60
expanded style 28

F
file organization 22

H
HiDPI images 80
Hunt, Andy 12

I
indented syntax 16
installing Sass
	 on a Mac 19
	 on Windows 21

J
Jehl, Scott 80

M
media queries 69
mixins 44
	 library of 56
	 inside mixins 87
	 with arguments 46

N
nested style	 28
nesting
	 CSS rules 32
	 media queries 69
	 namespaced properties 35

O
output formatting 27
overrides, inserting 38

P
parent selectors, referencing 36
Picturefill 80
placeholder selectors 66
Pragmatic Programmer, The 12

INDEX

 	 Index	 97	

R
retina screens 80
retinize mixin 83

S
Sass
	 definition of 14
	 syntax 15
SCSS (“Sassy CSS”) 15
style guides, creating 41

T
Thomas, Dave 12
thoughtbot 61

V
variables 40
	 defining 40
	 in CSS 43
viewports, multiple 75

W
watch command 22

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, both
by Xavier Dupré. Headlines and cover are set in Titling Gothic
by David Berlow.

This book was printed in the United States
using FSC certified Finch papers.

ABOUT THE AUTHOR

Dan Cederholm is a designer, au-
thor, and speaker living in Salem,
Massachusetts. He’s the Co-Founder
of Dribbble, a community for de-
signers, and Founder of SimpleBits,
a tiny design studio. A long-time ad-
vocate of standards-based web de-
sign, Dan has worked with YouTube,
Microsoft, Google, MTV, ESPN and
others. He’s written several popular

books about web design, and received a TechFellow award in
early 2012. He’s currently an aspiring clawhammer banjoist and
occasionally wears a baseball cap.

	Cover
	More from the A Book Apart Library
	Copyright
	Table of Contents
	Foreword
	Chapter 1: Why Sass?
	Chapter 2: Sass Workflow
	Chapter 3: Using Sass
	Chapter 4: Sass and Media Queries
	Resources
	References
	Acknowledgments
	Index
	About A Book Apart
	Colophon
	About the Author

